公卫人

 找回密码
 立即注册

QQ登录

只需一步,快速开始

不劳无获:如何获取钢镚? 因为论坛,所以相逢。 捐赠百科答题至尊

公卫考研:一起风雨兼程 因为梦想,所以努力。 真题答案政治英语

职称考试:诸君逢考必过 因为热爱,所以执着。 模拟考场技能执医中级

查看: 8169|回复: 20

[分享] [福利] 8本Meta分析英文原版电子书(免费PDF下载)

  [复制链接]
sampson2010 发表于 2014-10-18 13:59:51 | 显示全部楼层 |阅读模式

注册后推荐绑定QQ,之后方才可以使用下方的“用QQ帐号登录”。

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
本帖最后由 sampson2010 于 2015-3-3 21:18 编辑 ( G$ v' S6 j3 g$ o, y2 X+ }

( g! k- G& f2 L, W+ }Advances in Meta-Analysis
3 j8 F  O* ^2 B, B$ r( J dfb1ae72d031988dd5514bba6255e827-d.jpg % k( W, M7 A: a. l# k4 C' M2 @8 G
Author(s):Terri D. Pigott
  ]' {2 _# H2 J9 J: c+ ISeries: Statistics for Social and Behavioral Sciences( Z( g8 A6 l! g0 {0 [
Publisher: Springer
! B% W6 u5 I- Z: l6 t# o& w- ?Year: 2012       
( _, z6 V, H- x- e( \Edition: 2012* r* `$ ]' G# l( P+ n
Language: English        1 B* R9 b6 b1 I5 C/ Z
Pages: 170

% l) ^- {+ l7 H" R- ~
" I0 j* M( M0 k+ d3 VTable of contents :
% o5 |3 q' ~0 \% X; G) }Cover......Page 1; G% ^3 z( n1 y9 \2 A- B3 C
Statistics for Social and Behavioral Sciences......Page 2, _5 h+ X& X: F
Advances in Meta-Analysis......Page 4. |* S6 r4 q$ E- p6 C( ]
ISBN 9781461422778......Page 5
1 ?! v+ W) E& I  }4 aAcknowledgements......Page 8& \. a; Q6 E$ Z2 u0 S2 ?. c
Contents......Page 10
  Q2 t% Y3 s: c/ i1 n9 j" A3 d  U0 y1.1 Background......Page 163 O0 d7 z# s4 e8 b/ c3 Q
1.2 Planning a Systematic Review......Page 17
5 D3 t8 P+ r- H1.4 Interpreting Results from a Meta-analysis......Page 19
# b0 b+ T  o2 y& p1.5 What Do Readers Need to Know to Use This Book?......Page 20
$ g) r/ r3 D6 I' }' ]References......Page 21
; e1 c6 Q* n$ v2 p2.2 Introduction to Notation and Basic Meta-analysis......Page 22
) g. z1 b" v" |8 C2.3 The Random Effects Mean and Variance......Page 23& ^) K) s$ k% f; U9 [  Z0 Z5 E
2.4.2 Correlation Coefficient......Page 25
/ c9 u' G% Q& S( K, ?# l2.4.3 Log Odds Ratio......Page 26
2 U3 q: d- [6 C- c2 n" D9 bReferences......Page 27+ T; p  K1 O7 g7 v; e
3.1 Background......Page 28
0 m. t# S9 o! ?2 Z: ]# W" j3.2 Deciding on Important Moderators of Effect Size......Page 29
! U5 o/ d% S/ U4 z3.3 Choosing Among Fixed, Random and Mixed Effects Modelsƒ......Page 31
8 B8 E# V$ {% J; ^3.4 Computing the Variance Component in Random and Mixed Models......Page 33) i1 T3 ]9 ~: y8 v" k8 U9 B
3.4.1 Example......Page 35$ y( v! V% {- h) y: l. D
3.5 Confounding of Moderators in Effect Size Models......Page 36* Q2 v, u; G: O1 A9 w' w* |. e
3.5.1 Example......Page 38
2 J& Z8 x& \8 [3.6.1 Example......Page 40
) F7 B# R3 c3 B+ E* [* b3.7 Interpretation of Moderator Analyses......Page 43
$ Q0 {8 k. m0 K8 \Computing the Variance Component Using SAS......Page 44
8 l8 d  v3 x' K( A7 uComputing the Variance Component Using R......Page 452 g1 O+ U: i* `; _' G! ], R
Computing the Fixed Effects Meta-regression Using SAS......Page 469 z: Y, M0 j" Z4 y8 v0 X8 a
References......Page 47
: B1 v3 L) C" s& t4.1 Background......Page 50  X: i) L# T" c  P7 z. v
4.2 Fundamentals of Power Analysis......Page 52
1 U% @$ c3 V9 l4.3.1 Z-Test for the Mean Effect Size in the Fixed Effects Modelƒ......Page 54
; _' y8 C% P; V6 M' L0 H4.3.2 The Power of the Test of the Mean Effect Size in Fixed Effects Models......Page 56
/ v5 s+ w0 J' @8 k& z4.3.3 Deciding on Values for Parameters to Compute Power......Page 57
& r+ {( y! d/ t3 `# B2 N4.3.4 Example: Computing the Power of the Test of the Mean......Page 58
3 @$ u! J! U+ X, C; g8 Y0 q2 B1 A4.3.5 Example: Computing the Number of Studies Needed to Detect an Important Fixed Effects Mean......Page 604 `& x: m" ]: q8 Z0 B* B; ]7 t+ i5 [+ b
4.3.6 Example: Computing the Detectable Fixed Effects Mean in a Meta-analysis......Page 61! E8 a6 F  p+ A  F
4.4 Test of the Mean Effect Size in the Random Effects Model......Page 624 \8 ^, u) i& y1 F" B
4.4.1 The Power of the Test of the Mean Effect Size in Random Effects Models......Page 63
- M' b  k: ?) e% _4.4.2 Positing a Value for tau2 for Power Computations in the Random Effects Model......Page 64
/ F# j9 K1 i0 @9 J% |4 l4.4.3 Example: Estimating the Power of the Random Effects Mean......Page 65
6 b; F8 @3 H6 \: \  F4.4.4 Example: Computing the Number of Studies Needed to Detect an Important Random Effect Mean......Page 66
3 M* M0 L/ ~3 XExcel......Page 67
, ?# @+ q7 p: l1 v7 C( h6 vReferences......Page 68. P6 M4 F3 L% E! t8 D. [  `
5.1 Background......Page 70( I6 `1 D& o0 y+ j$ K
5.2.1 The Power of the Test of Homogeneity in a Fixed Effects Model......Page 71. Y. \5 X- K4 ?9 ^% B+ N0 [+ [
5.2.2 Choosing Values for the Parameters Needed to Compute Power of the Homogeneity Test in Fixed Effects Models......Page 72. ~9 q9 r7 ~) A! V1 O: {) o
5.2.3 Example: Estimating the Power of the Test of Homogeneity in Fixed Effects Models......Page 73
* Z7 }( n; v8 I# A. R) [5.3 The Test of the Significance of the Variance Component in Random Effects Models......Page 74& Q, Z% n& L5 }$ v( N1 U
5.3.1 Power of the Test of the Significance of the Variance Component in Random Effects Models......Page 75
' w0 W- j% B6 k4 X/ Z. g" k9 F5.3.2 Choosing Values for the Parameters Needed to Compute the Variance Component in Random Effects Models......Page 76
. W% Y% Q. X6 O: ]5.3.3 Example: Computing Power for Values of tau2, the Variance Component......Page 77/ W" U3 O- b6 e# a/ l
SAS......Page 79$ }2 Z' |& X3 M) A7 Q; h. P, a
R......Page 80' y& y; w1 C: P3 J/ _) E; k2 x
References......Page 816 ^- ^/ W& s2 ^
6.1 Background......Page 82
% I+ ~6 O* \5 f# @4 T6.2.2 Power of the Test of Between-Group Homogeneity, QB, in Fixed Effects Models......Page 83# z, q2 J2 c7 x3 f" ]
6.2.4 Example: Power of the Test of Between-Group Homogeneity in Fixed Effects Models......Page 859 n+ O3 @8 X, D. P8 Q' F
6.2.5 Power of the Test of Within-Group Homogeneity, QW, in Fixed Effects Models......Page 86( X& p) q7 y- l& z
6.2.6 Choosing Parameters for the Test of QW in Fixed Effects Models......Page 873 ]6 g* R4 b- r0 v1 T
6.2.7 Example: Power of the Test of Within-Group Homogeneity in Fixed Effects Models......Page 882 p1 Z: z" h; `/ ~) o
6.3.1 Power of Test of Between-Group Homogeneity in the Random Effects Model......Page 89' b. `, `$ j  C
6.3.3 Example: Power of the Test of Between-Group Homogeneity in Random Effects Models......Page 91
: W3 x/ q0 D# i/ e6 N- N% v$ R7 nReferences......Page 930 t% W+ X) T, W) E
7.1 Background......Page 94
1 o% E. B, H- u7.2.1 Identification of Publication Bias......Page 95
7 s* L, p, l* n7.2.1.1 Example of Funnel Plot......Page 96. f5 d$ L: t! I
7.2.2 Assessing the Sensitivity of Results to Publication Bias......Page 97
* ]; Q, \8 j/ v7.3 Missing Effect Sizes in a Meta-analysis......Page 100. F+ q: d! H9 ]9 t& X( l
7.4 Missing Moderators in Effect Size Models......Page 1011 P7 `, R/ {9 E: S* D& y- }. T
7.5 Theoretical Basis for Missing Data Methods......Page 102
7 B! Q" B/ [; v0 M, k5 E: l7.5.1 Multivariate Normality in Meta-analysis......Page 103
' e' j& D: {$ T; z( p4 A7.5.2 Missing Data Mechanisms or Reasons for Missing Data......Page 104
% [( Z& G- k* X1 Q7 W) B7.6.1 Complete-Case Analysis......Page 105
9 M7 U- W8 W  V* V# @) T6 `7.6.1.1 Example: Complete-Case Analysis......Page 106/ S. |* X. {2 {7 B1 \0 }8 F# N
7.6.2 Available Case Analysis or Pairwise Deletion......Page 107; S9 o. t' _1 l: c" J* d/ I
7.6.3 Single Value Imputation with the Complete Case Mean......Page 108
! l4 p" o* q) b9 \7.6.3.1 Example: Mean Imputation......Page 109# F( a( I6 I( Q+ P
7.6.4 Single Value Imputation Using Regression Techniques......Page 110
* G8 E4 T' o/ ]  o4 E2 ^7.6.4.1 Example: Regression Imputation......Page 111# `: s( N  D7 N% [9 |) G% C7 e- |
7.7.1 Maximum-Likelihood Methods for Missing Data Using the EM Algorithm......Page 112
# a1 h' i1 i$ }- z) N3 t4 u7.7.1.1 Example Using the EM Algorithm......Page 113
9 h& ]0 ~0 b& M" q+ X7.7.2.1 Generating Multiple Imputations......Page 1144 [1 [2 \* n& Y
7.7.2.3 Combining the Estimates......Page 1157 g1 r5 R* c$ g/ ?
R Programs......Page 117
) `9 _! R) t1 Y8 F' }- VSAS Proc MI......Page 119. P' l( D+ d& h9 v+ W8 w
References......Page 121
, x  r( w6 q4 H4 d9 w3 V, [- D: X8.1 Background......Page 124
* D/ W5 k3 @! ?. b' `% L9 [) z8.2 The Potential for IPD Meta-analysis......Page 125
& E% A; h$ e; Y" ^8.3.1 Simple Random Effects Models with Aggregated Data......Page 127% t- q6 v, a. n' x  E
8.3.2.1 Example: Two-Stage Method Using Correlation as the Effect Size......Page 129
3 H. U8 j8 a  N6 j* ?! `: P8.4.1 IPD Model for the Standardized Mean Difference......Page 130
# k5 v" H- Y1 R/ w3 k! p8.4.3 Model for the One-Stage Method with Both IPD and AD......Page 131- f+ T0 F# G, a6 K! Z6 k
8.5 Effect Size Models with Moderators Using a Mix of IPD and AD......Page 1331 g  x" A9 e& C( d
8.5.1 Two-Stage Methods for Meta-regression with a Mix of IPD and AD......Page 134( S* t' R2 b4 M0 v; }2 n
8.5.2 One-Stage Method for Meta-regression with a Mix of IPD and AD......Page 135
( ?) R6 X8 C' y9 N8.5.4 One-Stage Meta-regression with a Mix of IPD and AD......Page 136' ?7 M: Y, w/ @
8.5.4.1 Example: One-Stage Method for Meta-regression with Correlationsƒ......Page 137
) P; R3 V4 n5 {" XSAS Code for Simple Random Effects Model Using the Two-Step Method......Page 138
4 R2 k8 ?) ^, m% @; {- J( D4 QOutput from Two-Stage Simple Random Effects Model......Page 139
; K3 v; R3 ]3 i$ kSAS Code for Meta-regression Using the Two-Stage Method......Page 140, p! j2 L, b1 D8 a# B: E
SAS Code for Simple Random Effects Model Using the One-Stage Model......Page 1413 p+ o  ^; `$ B
Output from One-Stage Simple Random Effects Model......Page 143. U/ Z. j9 Z( b
Output for Meta-regression Using the One-Step Method......Page 144
4 d% P# L6 o# g7 s* [References......Page 145
# w5 E) J$ m. M! d2 B6 i9.1 Background......Page 148
! Q4 I2 X' t7 J3 L+ f# T$ T9.1.1 The Preventive Health Services (2009) Report on Breast Cancer Screening......Page 149% a- R# C& e- w% j, @
9.2.1 Surface Similarity......Page 150
* _" |, e  e: _( Y5 \5 [9.2.2 Ruling Out Irrelevancies......Page 151
! i' b. m+ z% a" z( d. d9.2.3 Making Discriminations......Page 152
5 V: f& h& Q9 k# n$ o9.2.5 Causal Explanation......Page 153* M4 n! X  D% U0 S3 v
9.3 Suggestions for Generalizing from a Meta-analysis......Page 154
. h" [% Q$ C! K" O; v$ \" aReferences......Page 1556 p) [% c4 c: H: M/ t
10.2 Understanding the Research Problem......Page 158
$ Q6 r4 S, f5 l  N10.3 Having an a Priori Plan for the Meta-analysis......Page 159
9 A6 l3 q0 c( [. {& j9 l6 n8 C6 r10.4 Carefully and Thoroughly Interpret the Results of Meta-analysis......Page 160& }1 C. }% V* K6 s+ o0 I8 K
References......Page 161
$ O# C  i- G( ]/ Q$ Y11.1 Sirin (2005) Meta-analysis on the Association Between Measures of Socioeconomic Status and Academic Achievement......Page 1624 p! p, f( O3 ~6 r: v! }
11.2 Hackshaw et al. (1997) Meta-analysis on Exposure to Passive Smoking and Lung Cancer......Page 164
; @" B3 N+ o3 _8 n% |, l11.3 Eagly et al. (2003) Meta-analysis on Gender Differences in Transformational Leadership......Page 166( ]+ D! ]1 |# L) _' w/ O) j( P
References......Page 167
3 H2 U3 n1 E7 p; z8 X' q" T# d" K7 IIndex......Page 168
0 @9 t* H+ {  s
* ?3 o7 }; a4 j0 i. U/ I Advances in Meta-Analysis (2012).pdf (1.03 MB, 下载次数: 600)

本帖被以下淘专辑推荐:

猫猫咪吖 发表于 2015-3-15 21:23:02 | 显示全部楼层
看不懂!
回复

使用道具 举报

糊涂毛毛虫 发表于 2015-3-19 15:06:57 | 显示全部楼层
谢谢楼主!!!!非常棒的资料~!
回复

使用道具 举报

zx08192004 发表于 2015-5-6 13:30:37 | 显示全部楼层
超级有用的资料,感谢楼主的分享,真得好好的学习学习。
回复

使用道具 举报

txyw 发表于 2015-5-11 15:21:07 | 显示全部楼层
楼主牛逼,有没有关于网络meta的书啊
回复

使用道具 举报

insect16 发表于 2015-6-26 11:25:52 | 显示全部楼层
感谢楼主无私分享
回复

使用道具 举报

MLJ要奋斗 发表于 2015-7-2 10:16:30 | 显示全部楼层
回复

使用道具 举报

 楼主| sampson2010 发表于 2015-7-2 15:29:39 | 显示全部楼层
txyw 发表于 2015-5-11 15:21) _. n1 c$ w! v8 ^  M0 m
楼主牛逼,有没有关于网络meta的书啊

3 y- z0 _+ t+ Q5 u: d% f/ R' _7 R最近忙于毕业,没时间整理,等闲下来了再发帖,记得关注哦!
回复

使用道具 举报

fisher163 发表于 2015-8-14 20:13:31 | 显示全部楼层
可以点个赞
回复

使用道具 举报

山脚下的小姑娘 发表于 2015-8-21 16:56:01 | 显示全部楼层
楼主太厉害了,非常感谢楼主的无私分享。向楼主学习。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

提现|充值|至尊会员|接种|公卫人 ( 沪ICP备06060850号-3 )

GMT+8, 2019-6-25 08:21 , Processed in 0.171331 second(s), 35 queries , Gzip On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表