公卫人

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 11316|回复: 21

[分享] [福利] 8本Meta分析英文原版电子书(免费PDF下载)

  [复制链接]
sampson2010 发表于 2014-10-18 13:59:51 | 显示全部楼层 |阅读模式

注册后推荐绑定QQ,之后方才可以使用下方的“用QQ帐号登录”。

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
本帖最后由 sampson2010 于 2015-3-3 21:18 编辑 0 A# k  a  j, m6 c
6 V, s! _* o9 C& [& [
Advances in Meta-Analysis+ B, n$ }* m# k" Z. {; ~: C
dfb1ae72d031988dd5514bba6255e827-d.jpg
, I5 c) G0 Z. A) Y) o7 `- UAuthor(s):Terri D. Pigott
6 q& T3 d  n: Q! W6 H0 USeries: Statistics for Social and Behavioral Sciences
4 B* P. \# }/ m( {Publisher: Springer0 Y& q: h; R0 z+ y; M
Year: 2012        ; i. e+ [; T$ |# k5 P  s1 W2 S" F, ]
Edition: 20128 h! g; j  W+ u( y) S, l
Language: English        . y+ B( U/ A6 g) Y2 g! ^, [) h; }. y& O
Pages: 170

1 R8 ^# U  r7 l$ f$ a0 `4 j) i
% ~% z; U4 D" p7 V3 s/ t3 P! c1 _- a+ aTable of contents : . u2 J3 O1 Q& {# ?) [* M9 t5 L
Cover......Page 1
8 W+ a3 ]- R+ B( OStatistics for Social and Behavioral Sciences......Page 2
3 X$ ?* \& I. Q! e) \' ]Advances in Meta-Analysis......Page 4
0 [# ^) K, e& V. Y$ i' W# tISBN 9781461422778......Page 5
, H- M" p& y9 m3 D: \& AAcknowledgements......Page 8: D2 D+ T7 m% D" {$ o* l; v5 H
Contents......Page 106 m5 X$ u/ ]2 _+ C: ]/ [( o" O& l
1.1 Background......Page 16
  [* L2 k1 o' p( e0 T8 n$ d1.2 Planning a Systematic Review......Page 17
2 H& _( `0 n+ u1.4 Interpreting Results from a Meta-analysis......Page 19
4 Z0 Z% N0 O  c: b0 F1.5 What Do Readers Need to Know to Use This Book?......Page 20. B1 z* Y, J+ ^& I& K6 Y7 G5 |
References......Page 21
: ~. _, _! l* c9 w4 r9 }9 x% M; y2.2 Introduction to Notation and Basic Meta-analysis......Page 22% Y1 E4 h( K: \
2.3 The Random Effects Mean and Variance......Page 23
) W2 b) F& u* q3 k: Z2.4.2 Correlation Coefficient......Page 25
$ L' J  D, }2 I  c2.4.3 Log Odds Ratio......Page 26, i, P$ c5 s2 d" b& p# k
References......Page 274 E. j4 Y2 g8 \# m
3.1 Background......Page 28
% c- q. H" G* S2 |  g% F/ _3.2 Deciding on Important Moderators of Effect Size......Page 294 c+ g. R. V" ~4 @4 `8 ~4 N
3.3 Choosing Among Fixed, Random and Mixed Effects Modelsƒ......Page 31
" X. T% O  }6 F3.4 Computing the Variance Component in Random and Mixed Models......Page 33/ b6 X7 A" u9 P# b& D& [
3.4.1 Example......Page 35
4 v6 X% X3 r' {* v# S0 f" r4 J3.5 Confounding of Moderators in Effect Size Models......Page 36" j& Y6 n5 s9 L, u) o. B9 X2 x
3.5.1 Example......Page 38% p% i4 f  n, {- t% @5 n" R& B
3.6.1 Example......Page 40  d9 X. r% Y; n$ |  j" E
3.7 Interpretation of Moderator Analyses......Page 436 Y. G9 E) X2 o$ c
Computing the Variance Component Using SAS......Page 445 F# |* h% [, t+ J/ h& d
Computing the Variance Component Using R......Page 45
0 v5 i7 b- [( n7 \# v7 ]8 KComputing the Fixed Effects Meta-regression Using SAS......Page 46; E+ w, [* W8 O+ g& {
References......Page 47
$ [9 J0 Y: ~  A# f$ S4.1 Background......Page 50) w+ ~; l5 V+ [# q! ~3 G) E& V7 T
4.2 Fundamentals of Power Analysis......Page 52
) m& J1 Z+ L( [$ u* n* w4.3.1 Z-Test for the Mean Effect Size in the Fixed Effects Modelƒ......Page 54
3 k, o7 r5 E7 }# S, ^4 [4.3.2 The Power of the Test of the Mean Effect Size in Fixed Effects Models......Page 564 x' a" L* x3 F; F
4.3.3 Deciding on Values for Parameters to Compute Power......Page 572 C# o1 d. o$ L6 _3 n( c& v
4.3.4 Example: Computing the Power of the Test of the Mean......Page 58
: n7 k& H3 j0 v3 S$ [& K4.3.5 Example: Computing the Number of Studies Needed to Detect an Important Fixed Effects Mean......Page 60) J7 Q5 j0 C+ T% A- t- W& z
4.3.6 Example: Computing the Detectable Fixed Effects Mean in a Meta-analysis......Page 61+ u# v" U3 f$ \9 _
4.4 Test of the Mean Effect Size in the Random Effects Model......Page 621 D# f8 u8 m4 P9 C' P; }
4.4.1 The Power of the Test of the Mean Effect Size in Random Effects Models......Page 63
! D: d+ d0 _. \+ U0 R- u4.4.2 Positing a Value for tau2 for Power Computations in the Random Effects Model......Page 64, f1 T) k, A" `, W/ J
4.4.3 Example: Estimating the Power of the Random Effects Mean......Page 65
7 m8 e- q4 A: g9 E% s  H* G4.4.4 Example: Computing the Number of Studies Needed to Detect an Important Random Effect Mean......Page 66  ^$ Q/ e: s, F, I* m
Excel......Page 679 p- I: u  M. C, c# C! |) V
References......Page 68
- h7 U/ M- S% i! N5.1 Background......Page 70
) k2 E  _9 n6 [5.2.1 The Power of the Test of Homogeneity in a Fixed Effects Model......Page 71
4 ]/ {  o: E, V8 l0 k& _$ Y$ w5.2.2 Choosing Values for the Parameters Needed to Compute Power of the Homogeneity Test in Fixed Effects Models......Page 725 Y( u- e5 K9 P: }# ~/ X" q
5.2.3 Example: Estimating the Power of the Test of Homogeneity in Fixed Effects Models......Page 73
# p6 |  T& f6 ]; a3 I5.3 The Test of the Significance of the Variance Component in Random Effects Models......Page 74
$ l$ Y. ~" N: I0 u5.3.1 Power of the Test of the Significance of the Variance Component in Random Effects Models......Page 75$ r6 a, e' R5 |* [1 z
5.3.2 Choosing Values for the Parameters Needed to Compute the Variance Component in Random Effects Models......Page 76
) o8 D, u% c: x; ?5.3.3 Example: Computing Power for Values of tau2, the Variance Component......Page 776 Y4 ?- V) _- ^/ @0 M8 E. w
SAS......Page 79
6 J8 f* l* X$ n0 Q( v  |: VR......Page 80, d' _8 H% |) P7 r4 b2 m
References......Page 81
, Q* t3 J6 x$ s2 m7 e" a+ U6.1 Background......Page 827 p* j  n* h' N$ Z
6.2.2 Power of the Test of Between-Group Homogeneity, QB, in Fixed Effects Models......Page 830 Q( Q5 U7 m% L* E0 K) z' S3 c! b
6.2.4 Example: Power of the Test of Between-Group Homogeneity in Fixed Effects Models......Page 85
6 t# u5 Z7 H7 c* T6.2.5 Power of the Test of Within-Group Homogeneity, QW, in Fixed Effects Models......Page 86; {8 F4 `) B2 R# k
6.2.6 Choosing Parameters for the Test of QW in Fixed Effects Models......Page 87
: b& q  p+ v3 H+ r+ R5 I6.2.7 Example: Power of the Test of Within-Group Homogeneity in Fixed Effects Models......Page 88
( M9 e$ D2 i5 }6.3.1 Power of Test of Between-Group Homogeneity in the Random Effects Model......Page 898 E; c- t0 h8 R6 p
6.3.3 Example: Power of the Test of Between-Group Homogeneity in Random Effects Models......Page 916 I. G& E4 X& ]9 G3 ~
References......Page 93
& _$ y$ J' \; T! m* q& N  ?7.1 Background......Page 94# _6 O/ b5 P% s
7.2.1 Identification of Publication Bias......Page 95
, t2 u6 r+ U( ^" s5 z7.2.1.1 Example of Funnel Plot......Page 96
) C) H" F+ D* E  T& v8 H7.2.2 Assessing the Sensitivity of Results to Publication Bias......Page 971 ^0 L, N- s, A5 C+ ~
7.3 Missing Effect Sizes in a Meta-analysis......Page 100
% V! r+ i: `/ U, U2 ~8 Y+ U! O& w7.4 Missing Moderators in Effect Size Models......Page 101+ L7 Z8 _& m! [, c. c- B
7.5 Theoretical Basis for Missing Data Methods......Page 102" _8 e$ O0 w* V3 m; ~* C9 J- r, L& v
7.5.1 Multivariate Normality in Meta-analysis......Page 103
/ L5 ~' {* C+ Y7.5.2 Missing Data Mechanisms or Reasons for Missing Data......Page 104; E* q2 {: @$ O0 O3 z3 ~3 E# n
7.6.1 Complete-Case Analysis......Page 105+ s& k+ s, c; r) v
7.6.1.1 Example: Complete-Case Analysis......Page 106
# T7 _1 {, o! T9 S; I* f7.6.2 Available Case Analysis or Pairwise Deletion......Page 107
2 N$ ?! T# t; i# E0 o6 c7.6.3 Single Value Imputation with the Complete Case Mean......Page 108
1 R, r- J% c. k7.6.3.1 Example: Mean Imputation......Page 109
" G5 O+ c! Y- o: a4 e2 a7.6.4 Single Value Imputation Using Regression Techniques......Page 110; U6 e& |1 |: x7 N+ S6 m) D7 q4 }& Y
7.6.4.1 Example: Regression Imputation......Page 111
* M' P9 [4 J# d7.7.1 Maximum-Likelihood Methods for Missing Data Using the EM Algorithm......Page 1125 l+ _) J; J- T! @$ Z% e
7.7.1.1 Example Using the EM Algorithm......Page 113
% `: \% u1 |8 ?  L  L( D& w9 `7.7.2.1 Generating Multiple Imputations......Page 114
. F: d4 A8 w9 g; `+ R7.7.2.3 Combining the Estimates......Page 115
( p# k( j4 h) E" B9 K9 L* C9 eR Programs......Page 117( |+ k- t$ L' z8 J* _
SAS Proc MI......Page 119; z5 v7 _1 {% U
References......Page 121. h) f8 q$ s% a- ?- ?% U
8.1 Background......Page 124; G! c7 I( z$ d6 ^, _' b8 b
8.2 The Potential for IPD Meta-analysis......Page 125
* |8 D" o/ K1 g; F( ~8.3.1 Simple Random Effects Models with Aggregated Data......Page 127
$ Y. T( H& o8 ], l; Q& f" q7 x! z+ h8.3.2.1 Example: Two-Stage Method Using Correlation as the Effect Size......Page 1299 s  [0 t" P5 r9 F
8.4.1 IPD Model for the Standardized Mean Difference......Page 130
1 |8 K% P1 V8 r8 T* [7 g8.4.3 Model for the One-Stage Method with Both IPD and AD......Page 131
2 P1 c5 A+ W1 f9 e8.5 Effect Size Models with Moderators Using a Mix of IPD and AD......Page 133, B  K. ~/ K- ]% W0 |% q. _
8.5.1 Two-Stage Methods for Meta-regression with a Mix of IPD and AD......Page 134
! b- t6 X" J$ r6 e8 o% T8.5.2 One-Stage Method for Meta-regression with a Mix of IPD and AD......Page 135! c3 J' G$ y9 w+ r" a  Q6 K
8.5.4 One-Stage Meta-regression with a Mix of IPD and AD......Page 136
: l1 P* O- y! D& T6 O8.5.4.1 Example: One-Stage Method for Meta-regression with Correlationsƒ......Page 1378 ?  |6 N2 _6 |# Q' l
SAS Code for Simple Random Effects Model Using the Two-Step Method......Page 138
6 g2 }- Y# }* W4 OOutput from Two-Stage Simple Random Effects Model......Page 139
8 R5 B: q" q5 |% |SAS Code for Meta-regression Using the Two-Stage Method......Page 140
0 p; r: v$ Y! i1 eSAS Code for Simple Random Effects Model Using the One-Stage Model......Page 141# F$ u; E0 Y# I, P0 F: b- I
Output from One-Stage Simple Random Effects Model......Page 143
, G$ G  c% d) i5 f+ qOutput for Meta-regression Using the One-Step Method......Page 144& C5 \  L8 N$ ^
References......Page 145
0 \4 h6 ~9 ?# Z% y: Q6 t- j9.1 Background......Page 1481 u( |8 i6 i. M% ^# `  e
9.1.1 The Preventive Health Services (2009) Report on Breast Cancer Screening......Page 149
' l3 z8 t( L: N6 ]; e& g9.2.1 Surface Similarity......Page 150
0 z" K; Q! X, M9 W: i9.2.2 Ruling Out Irrelevancies......Page 151
3 @& M& P; l4 d' @/ M9.2.3 Making Discriminations......Page 1528 Z- A$ X6 N# j( W7 F) T4 m) f
9.2.5 Causal Explanation......Page 1535 H: }+ D1 q. G6 b8 q  T6 P
9.3 Suggestions for Generalizing from a Meta-analysis......Page 154; `( c6 _3 K6 e. w
References......Page 155
$ W3 F7 H9 s. i/ l" ~10.2 Understanding the Research Problem......Page 158' z# ^9 D; t) J" j/ }
10.3 Having an a Priori Plan for the Meta-analysis......Page 159
% P; N. ?& s, w" ?, j- v% x10.4 Carefully and Thoroughly Interpret the Results of Meta-analysis......Page 160
9 Q) W! `. I. T: f5 B6 SReferences......Page 161
% O3 H* a" D4 r% {# d, J1 @; Q11.1 Sirin (2005) Meta-analysis on the Association Between Measures of Socioeconomic Status and Academic Achievement......Page 1623 T2 @9 t1 I  Q9 A& j6 Q  y* ]" d
11.2 Hackshaw et al. (1997) Meta-analysis on Exposure to Passive Smoking and Lung Cancer......Page 164
- v! d0 O5 g# A8 R3 l; Y( g% P11.3 Eagly et al. (2003) Meta-analysis on Gender Differences in Transformational Leadership......Page 1665 S. }4 d2 P* w9 @" r) w$ ?0 W8 H! \/ k
References......Page 167
+ F+ \, C7 U9 x' ]3 d6 ZIndex......Page 168
1 ^. j& u" j0 p( b2 h' R. N/ Q
9 l# s, Q& H% T" ^6 O2 r/ Q Advances in Meta-Analysis (2012).pdf (1.03 MB, 下载次数: 621)

本帖被以下淘专辑推荐:

猫猫咪吖 发表于 2015-3-15 21:23:02 | 显示全部楼层
看不懂!
回复

使用道具 举报

糊涂毛毛虫 发表于 2015-3-19 15:06:57 | 显示全部楼层
谢谢楼主!!!!非常棒的资料~!
回复

使用道具 举报

zx08192004 发表于 2015-5-6 13:30:37 | 显示全部楼层
超级有用的资料,感谢楼主的分享,真得好好的学习学习。
回复

使用道具 举报

txyw 发表于 2015-5-11 15:21:07 | 显示全部楼层
楼主牛逼,有没有关于网络meta的书啊
回复

使用道具 举报

insect16 发表于 2015-6-26 11:25:52 | 显示全部楼层
感谢楼主无私分享
回复

使用道具 举报

MLJ要奋斗 发表于 2015-7-2 10:16:30 | 显示全部楼层
回复

使用道具 举报

 楼主| sampson2010 发表于 2015-7-2 15:29:39 | 显示全部楼层
txyw 发表于 2015-5-11 15:21
" _+ Q; Y# m* p! [4 x' n楼主牛逼,有没有关于网络meta的书啊
& [3 B# m/ L- x  \* j' ?( J  @
最近忙于毕业,没时间整理,等闲下来了再发帖,记得关注哦!
回复

使用道具 举报

fisher163 发表于 2015-8-14 20:13:31 | 显示全部楼层
可以点个赞
回复

使用道具 举报

山脚下的小姑娘 发表于 2015-8-21 16:56:01 | 显示全部楼层
楼主太厉害了,非常感谢楼主的无私分享。向楼主学习。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

充值|至尊会员|接种|公卫人 ( 沪ICP备06060850号-3 )

GMT+8, 2020-1-30 05:42 , Processed in 0.238698 second(s), 36 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表